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FARM–LEVEL OPTIMIZATION OF BMP PLACEMENT

FOR COST–EFFECTIVE POLLUTION REDUCTION

M. W. Gitau,  T. L. Veith,  W. J. Gburek

ABSTRACT. With best management practices (BMPs) being used increasingly to control agricultural pollutant losses to surface
waters, establishing the environmental effectiveness of these practices has become important. Additionally, cost implications
of establishing and maintaining environmentally effective BMPs are often a crucial factor in selecting and adopting BMPs.
This article considers both water quality and economic concerns and presents a methodology developed for determining cost-
effective  farm- or watershed-level scenarios through optimization. This optimization technique uniquely incorporates three
existing tools: a genetic algorithm (GA), a watershed-level nonpoint-source model (Soil and Water Assessment Tool, SWAT),
and a BMP tool. The GA combines initial pollutant loadings from SWAT with literature-based pollution reduction efficiencies
from the BMP tool and with BMP costs to determine cost-effective watershed scenarios. The methodology was successfully
applied to a 300 ha farm within the Cannonsville Reservoir watershed, a phosphorus (P) restricted reservoir within New York
City’s water supply system. An average reduction in dissolved P of 60% over the lifetime of the BMPs was set as the pollutant
target. A baseline scenario was established to represent practices on the farm before BMP implementation. The most cost-
effective  scenario for the farm, under the presented methodology, achieved a cost-effectiveness of 0.6 kg dissolved P reduction
per dollar spent per year. Additionally, the methodology determined alternative scenarios for the farm, which met the pollu-
tion reduction criterion cost-effectively. The methodology, as developed, is extendable to multi-farm or watershed-level eval-
uations.

Keywords. Agricultural nonpoint-source pollution, BMP, Genetic algorithm, SWAT.

mproving water quality by reducing pollution from
agricultural  lands has become an issue of increasing in-
terest. A wide range of structural and management−
based practices, collectively known as best manage−

ment practices (BMPs), are used to control pollutant losses.
However, BMPs are increasingly being used without a suffi-
cient research base to establish overall effectiveness of BMP
combinations applied at the farm or watershed scale and to
suggest the most effective placement of the BMPs (Dillaha,
1990; NRCS, 2004).

Cost implications of establishing and maintaining envi-
ronmentally effective BMPs are a crucial factor in selecting
and adopting BMPs. Costs are typically borne by farmers,
who may not be willing to implement expensive BMPs.
Additionally, economic interests between the private and
public sector may differ. The farmer who is interested in
increasing profit margins through increased yields will tend
to focus on profitability when making management deci-
sions. Society, on the other hand, may be primarily interested
in improved water quality and may have little concern for
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costs unless pollution reduction costs are reflected in
increased taxation, consumer−related costs, or public dollars
invested with no return in improved water quality.

Pollutant losses from a site with one or more BMPs can
often be measured satisfactorily over time after BMPs are
implemented.  However, pre-determination of the impact of
a BMP on a specific site and of interaction effects among
BMPs becomes much more complex. Likewise, BMP
implementation  and maintenance costs can be established
through records kept by those implementing the BMPs, but
assessing trade-offs between cost increase and pollution
reduction across multiple fields or farms is more complex.
The solution to identifying feasible, cost-effective BMP
combinations,  then, lies in optimizing selection and place-
ment of the BMPs in order to determine combinations of high
pollutant reduction at low cost.

Because there can be several workable and acceptable
solutions to BMP placement for any farm or watershed, an
optimization algorithm that efficiently provides a number of
near-optimal solutions is desirable. One such technique is the
genetic algorithm (GA; Goldberg, 1989). By sampling
broadly across the response surface, GAs have the ability to
provide a number of near-optimal solutions from different
areas of the surface. The GA has previously been used by
Chatterjee (1997), Srivastava et al. (2002), and Veith et al.
(2003) in BMP optimization studies.

The objective of the presented study was to develop a
methodology for determining optimal selection and place-
ment of BMPs, with a view to identifying cost-effective solu-
tions for nonpoint-source pollution reduction, with a focus on
dissolved phosphorus (P). The study’s objective was ad-
dressed by combining the Soil and Water Assessment Tool
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(SWAT; Arnold et al., 1998), a BMP tool (Gitau et al., 2002,
Gitau, 2003), site-specific BMP costs, and an upgraded ver-
sion of the GA presented in Veith et al. (2003). SWAT is a
watershed-level,  nonpoint-source model from which base-
line pollutant loadings can be obtained. The BMP tool in-
cludes literature-based P reduction efficiencies for both
management  and structural BMPs. Optimization was carried
out using the GA, a robust search algorithm for problems with
a large number of variables and possible solutions.

In the studies by Chatterjee (1997), Srivastava et al.
(2002), and Veith et al. (2003), BMP effectiveness data were
supplied through nonpoint-source model runs. Comparative-
ly, use of the BMP tool is more time efficient with regard to
optimization runs. The BMP tool also offers greater flexibil-
ity with regard to the types of BMPs that can be selected.
Monitored data, when available in sufficient detail, can
replace SWAT output in the presented methodology. Howev-
er, by incorporating an accepted watershed-level model
(SWAT) for initial estimation of pollutant loadings under a
baseline scenario, the methodology extends to locations that
have not been as fully sampled.

MATERIALS AND METHODS
The developed methodology is comprised of four compo-

nents: GA, SWAT, the BMP tool, and BMP costs. The GA
combines average annual pollutant loads from SWAT with
reduction efficiencies from the BMP tool and annualized
BMP costs appropriate to the study area in an iterative
process, in order to determine the cost-effectiveness of each
BMP scenario. The components of the developed methodolo-
gy and their interactions are shown in figure 1 and described
further in this section.

COMPONENT DESCRIPTIONS

Basic descriptions of the four components are presented
in this subsection. Because the focus of this article is on the
component interactions, which facilitate the optimization
process, the descriptions explain more about model options
selected within the components than history and theory of
each component. References are given to allow the interested

reader to quickly gather more specific information about a
particular component.

Genetic Algorithm
A genetic algorithm (GA; Goldberg, 1989; Chambers,

1995) is used to optimize BMP placement with respect to cost
and pollution reduction. The GA has been used since its
inception in the 1960s, mainly in industrial engineering and
business applications (Goldberg, 1989; Mitchell, 1999). In a
basic GA, populations of individuals progress from genera-
tion to generation based on fitness scores that represent the
optimization goal. Each individual of a population is
modeled as a chromosome, with genes on the chromosome
defining relevant traits of the individual. The possible values
of each gene form an allele set for the gene. The value of each
gene is selected from its allele set through crossover of
existing individuals and through random mutation. Each
individual is then assigned a fitness score based on how well
the combined traits of the individual satisfy the objective of
the optimization.

For example, each farm scenario is represented as an
individual,  or chromosome, within the GA. Each field within
the farm is represented as a gene with the possible BMPs for
that field forming the gene’s allele set. The BMP scenario is
then associated with a fitness score based on how well the
scenario reduces costs and pollutant losses from the farm.
The more the BMP scenario minimizes pollutant losses and
costs, the more desirable (more fit) that scenario is and hence
the higher its fitness score.

At each generation, new individuals are added to the
population through crossover and mutation, while previous
individuals with low fitness scores are dropped from the
population. New individuals are typically more likely to be
formed from highly fit existing individuals, which helps
drive the GA toward improving solutions. The most fit
chromosomes (i.e., the ones with the lowest pollutant losses
and costs) from the previous generation are also often carried
over into the new generation to ensure that the best-found
solution is maintained. The process terminates when no
further improvement in cost-effectiveness is being achieved.

The GA for this research uses a steady–state, tournament
selection replacement scheme, in which a given percentage

Components

Genetic Algorithm
(GA; modified from
Veith et al., 2003)

BMP tool
(Gitau et al.,
2002)

SWAT model
(Arnold et al.,
1998)

BMP costs
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phosphorus loads
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Figure 1. Flowchart of optimization methodology showing components and their interactions.
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or a set number of the population is replaced at each genera-
tion (Mitchell, 1999). A tournament selection scheme proba-
bilistically selects two members of the population based on
the ratio of each individual’s fitness to the sum of all fitness
values. Of these two individuals, the one with the higher fit-
ness score is chosen. The selection process is repeated, and
the two chosen individuals are used to create two new indi-
viduals by reproduction, crossover, and mutation, based on
the assigned probabilities of these operations. New members
are created and added to the previous generation until the re-
placement percentage is met. Then the least fit members of
the temporarily expanded population are removed from the
generation, resulting in a constant population size with each
successive generation.

SWAT
The Soil and Water Assessment Tool (SWAT; Arnold et

al., 1998) is a daily time step, continuous simulation, river
basin or watershed scale model designed for use in gauged or
ungauged basins. SWAT incorporates features of several
models, including the Simulator for Water Resources in
Rural Basins (SWRRB; Williams et al., 1985; Arnold et al.,
1990); Chemicals, Runoff, and Erosion from Agricultural
Management Systems (CREAMS; Knisel, 1980); Ground
Water Loading Effects on Agricultural Management Systems
(GLEAMS; Leonard et al., 1987); and Erosion Productivity
Impact Calculator (EPIC; Williams et al., 1984). SWAT
simulates water movement, sediment loss, and nutrient losses
throughout the simulated region.

The model allows a flexible discretization of a watershed.
The watershed is first partitioned into subwatersheds or
subbasins. Each subbasin is then further subdivided into
hydrologic response units (HRUs), which are land areas
within a subbasin that have distinct land cover and soil. The
degree of subdivision is based on land use and soil thresholds
specified by the user. Any land use that occupies a percentage
larger than the specified threshold is considered a unique land
use. Soils occupying percentages larger than the specified
soil threshold, within the land use area, are considered unique
soils. Land use and soil areas not meeting these pre-
determined thresholds are lumped within the larger areas.
Lowering the thresholds lessens the lumping, and the model
can be set to preclude any lumping by setting both thresholds
to zero.

Base input data required to run SWAT includes climate
(precipitation,  temperature, relative humidity, solar radi-
ation, and wind speed), land use, soils, and topography. The

model will set defaults for most of the other input parameters,
such as those pertaining to management, crop growth, and
water quality. However, entering known or measured values
for these inputs and calibrating unknown parameters to the
extent possible improves the accuracy of the watershed
representation and thus, theoretically, the overall model
accuracy.

SWAT calculates slopes while building the input data
files. However, SWAT performs slope computations on a
subbasin basis, assigning the same slope value to all HRUs
within a subbasin regardless of their position on the
landscape. Slope affects both water flow and pollutant
transport and is a key input for the BMP tool. Thus, the DEM
was used to recalculate slopes on an HRU basis to obtain a
representative  slope for each HRU.

SWAT provides several levels of spatial and temporal
output. The BMP placement methodology discussed in this
article used HRU-level output as input for the GA. Average
annual output from SWAT was used to correspond to
effectiveness estimates from the BMP tool, which represent
average BMP effects over time. SWAT also provides output
on a variety of water quality parameters. Of interest to this
study was dissolved P.

BMP Tool
Developed within Microsoft Access, the BMP tool (Gitau

et al., 2002; Gitau, 2003) was based on effectiveness data
obtained from published BMP monitoring studies. The
underlying database contains data on particulate, dissolved,
and total P effectiveness (defined as the percentage by which
P is reduced), associated site and study characteristics, and
complete literature citations for a variety of agricultural
BMPs. It also contains information on nitrogen, sediment,
and runoff reductions (not addressed in this article). The
database currently contains 32 BMPs grouped into three
broad categories: erosion control, nutrient management, and
barnyard management. At present, the database contains data
analyzed for eight classes of BMPs (table 1): animal waste
systems, barnyard runoff management, conservation tillage,
contour strip cropping, crop rotation, vegetated filter strips,
field-level nutrient management plans, and riparian forest
buffers. Analyses involve descriptive statistics (mean, range,
and standard deviation) determined for each BMP, by
individual soils or slopes, and by combinations of soils and
slopes.

The BMP tool was designed to allow site-specific
estimates of BMP effectiveness and to facilitate access to

Table 1. Eight classes of best management practices (BMPs) used in the BMP tool.
BMP Description
Animal waste systems Systems designed for proper collection, transport, and storage of livestock manure and other animal waste.
Barnyard runoff management Exclusion of clean water runoff from barnyard and disposal of remaining barnyard runoff in a way that minimizes its

pollution potential.
Conservation tillage Any tillage and planting system that leaves a minimum of 30% of the soil surface covered with plant residue after the

tillage or planting operation (i.e., reduced-tillage or no-tillage).
Contour strip crop Alternating strips of a row crop with a small grain or forage, planted on the contour (contour strip cropping) or across

the slope (field strip cropping).
Crop rotation A planned sequence of annual and/or perennial crops.
Vegetated filter strips Strips of perennial grasses, planted across the slope, established adjacent to areas of high pollutant potential and man-

aged for pollutant removal by overland flow.

Nutrient management plan Managing the rate, timing, and placement of fertilizers, manures, and other nutrient sources to encourage maximum
nutrient recycling and minimize nutrient runoff and leaching.

Riparian forest buffers Areas of trees, shrubs, and grasses located adjacent to ponds, lakes, and streams to filter out pollutants from runoff and
provide shade for fish and wildlife.
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analyzed data and associated citations. Values from the tool
represent the average effectiveness of each BMP over its ex-
pected lifetime. The tool can be used either as a stand-alone
application or in conjunction with a nonpoint-source model.

In order to apply effectiveness information in the opti-
mization, all effectiveness estimates were converted to
BMP-specific reductions, computed as a fraction, based on
effectiveness estimates:
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The reduction estimate refers to the fraction of the original
pollution leaving the source after BMP implementation. For
example, suppose 100 g of dissolved P leaves a field with 3%
to 8% slope and hydrologic soil group C. Applying contour
strip cropping, for which the BMP tool calculates an effec-
tiveness of 45%, is estimated to result in 45 g of dissolved P
remaining on the field and 55 g leaving the field.

BMP Costs
The BMP cost data are comprised of current implementa-

tion expenses and expected lifetimes of the BMPs. Because
BMPs have varying lifetimes (for example, riparian buffers
have a lifetime of 25 years, while nutrient management plans
have a lifetime of one year), all costs were reduced to their
annual values, using equation 2 (Degarmo et al., 1997, App.
C). Annualizing BMP costs provides a means of comparing
BMPs by cost and supplying cost values that can be utilized
in conjunction with time-averaged pollutant load and BMP
effects.
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where
ABMP = annualized cost for a BMP ($)
Z = capital cost of the BMP ($)
r = time value for money (%)
n = lifetime of the BMP (years).

PROBLEM REPRESENTATION

To solve a problem with the GA heuristic, the problem
must be clearly represented in terms of the GA framework.
In this study, the farm is represented as a chromosome and is
divided into SWAT HRUs with each HRU represented as a
gene. Each HRU is assigned an allele set comprised of the
management practices and combinations of practices feasi-
ble for that HRU. Any HRU not in production is assigned a
single allele, representing the baseline value, and maintains
a fixed set of management practices. A farm scenario is
formed by assigning, for all HRUs in the farm, one feasible
management practice or a combination of practices to each
HRU. Each scenario becomes a potential solution to the BMP
placement problem.

SCENARIO FITNESS

Within a GA, fitness functions establish the degree to
which a scenario meets the objective criteria as compared to
the other scenarios. The GA for this study uses a two-part
fitness equation: optimizing first for pollution control and
next for cost reduction. For each scenario, farm-level

pollutant loss is determined by calculating pollutant loss
from each HRU, after any BMPs have been applied, and then
routing these losses through the stream network. Pollution
reduction for the working scenario is stated as a function of
the baseline scenario pollutant level and the target pollutant
reduction level:
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where
P = pollutant score (dimensionless)
pb = pollutant loading from baseline scenario (units of

mass)
pt = target pollutant loading (units of mass)
pw = pollutant loading from working scenario (units of

mass).
Due to the goals of the optimization procedure, scenarios

giving pollutant loadings less than the user-specified target
load are preferred. For a pollutant load between the target and
baseline loads, the score increases linearly as pollutant load
decreases (fig. 2). Fitness scores of scenarios with pollutant
loading larger than the baseline are set to zero, removing
these scenarios from the optimization process. The baseline
loading was chosen as an upper limit in order to prevent
negative fitness scores but retain flexibility in the use of the
optimization procedure over a range of applications.

Scenario cost increase from the baseline is the direct sum,
across all HRUs on the farm, of implementing the BMPs in
that scenario. The cost fitness function scales the total cost
increase of the working scenario in relation to the maximum
and minimum desired cost increases by mimicking the
pollutant fitness function:
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where
C = cost score (dimensionless)
cm = maximum allowable cost increase from baseline

scenario ($)
ct = target cost increase from baseline scenario ($)
cw = cost increase of working scenario from baseline

scenario ($).

0

0.25

0.5

0.75

1

P
o

llu
ta

n
t 

sc
o

re
, P

  [
d

im
en

si
o

n
le

ss
]

pt pb
0

0.25

0.5

0.75

1

Pollutant load of working scenario, pw [units of mass]

pt pb

Figure 2. Pollutant score fitness function.
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A lower bound of one instead of zero is used for the cost
fitness function to simplify connection with the pollutant
fitness function. For this study, the target cost increase from
the baseline scenario was set at zero. However, in situations
where a fixed amount of money is provided for water quality,
the target cost may be used as a threshold at which all less
expensive scenarios meeting the pollutant-target criterion are
considered equally fit. In such cases qualitative measures,
such as farmer acceptance, may be used to choose among
cost-effective scenarios.

The GA evaluates each scenario by combining the pollu-
tant and cost fitness scores into a single objective function:
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where
F = total fitness score (dimensionless)
P = pollutant fitness score (dimensionless)
C = cost fitness score (dimensionless).
The overall fitness (eq. 5) of each scenario is then

determined based on pollution reduction (eq. 3) and cost
increase (eq. 4). Each scenario is first examined to see if its
pollutant load meets the pollutant-targeting criterion. All
scenarios that meet the pollutant-targeting criterion
(i.e., have a pollutant fitness score of one) are then ranked
based on their economic fitness scores. Hence, for each
population and for the GA as a whole, the scenario that meets
the pollutant-targeting criterion for the least cost has the
highest total fitness score.

As the GA progresses, scenarios that meet the pollution
reduction criterion but cost less than previous scenarios have
a high probability of being replicated and combined to form
new scenarios. In contrast, scenarios that meet the pollution
reduction criterion but cost more than some or all previous
scenarios have a low probability of being carried through in
the optimization. By continually promoting the low-cost,
pollution-reducing  scenarios, future scenarios will contain
BMP placement and selection combinations from the
promoted scenarios and will themselves become even lower
cost (i.e., more optimal).

MODIFICATIONS TO INITIAL OPTIMIZATION COMPONENT

The GA used in this study builds on one developed by
Veith (2002) and described by Veith et al. (2003). The
optimization component was written as a console executable
program in C++ using the GALib GA package (ver. 2.4.4.
Matthew Wall, Massachusetts Institute of Technology,
Cambridge, Mass. Available at: http://lancet.mit.edu/ga/.
Accessed 12 July 2001). Four major modifications to the
optimization component were made to improve flexibility in
creating allele sets and to accommodate SWAT and the BMP
tool in place of the previous nonpoint-source module:

� Routing of each subbasin follows the structure used by
the SWAT watershed configuration file (Neitsch et al.,
2002). The percentage of transport loss for each subba-
sin is an input based, for example, on the subbasin’s av-
erage transport loss reported by SWAT for the baseline
run.

� The amount of each land management area, or HRU,
within a user-specified buffer zone can be input. Addi-
tionally, each BMP is classified as applicable to buff-
ers, non-buffered land, or both. Thus, the pollution
reduction and cost impacts of each BMP on each HRU

are a function of the type of BMP and the amount of the
HRU that is within the buffer zone.

� In the previous version, two functional allele sets, one
for cropland and one for grassland, were available. In
the modified version, allele sets for each HRU are com-
pletely user-specified, increasing the ability to unique-
ly define each HRU and to improve customization of
the watershed representation. Through these modifica-
tions, an HRU may remain permanently unchanged
from the baseline, groups of HRUs may have the same
allele set, or every HRU may have a unique allele set.

� A variable was added to reduce the contributing area of
an HRU to the percentage specifically contributing to
load reduction as a result of applying facility BMPs,
such as animal waste systems, barnyard runoff man-
agement, or vegetated filter strips.

CASE STUDY
This study used the described methodology to optimize

BMP selection and placement for a farm located within the
New York City water supply watersheds. The study com-
bined baseline P loadings from the farm as simulated by the
SWAT model, site-specific BMP effectiveness estimates
from a BMP tool, and annualized BMP costs as determined
from Delaware County, New York, data to provide input data
for running the GA. The GA used this information to
optimize BMP placement on the farm with regard to
cost-effective control of farm-level P losses.

SITE DESCRIPTION
For demonstration of the methodology, a single farm

within Town Brook watershed (TBW), Delaware County,
New York, was selected. TBW is part of the Cannonsville
Reservoir watershed (fig. 3), which in turn is part of the
Catskill/Delaware  system, a watershed system that supplies
the majority of New York City’s potable water. Agriculture
in the Catskill/Delaware region is focused on dairy produc-
tion and supporting cropland practices. As a result, water
quality is at risk from excess manure and fertilizer applica-
tion, barnyard runoff, and soil loss, with P being the main
pollutant of concern (Watershed Agricultural Council,
1997).

Ongoing work to control P loss in the TBW has involved
systematic implementation of BMPs across several pilot
farms within the watershed. This effort has been guided by
the New York City Watershed Agricultural Council, a body
that oversees BMP implementation in the New York City
watersheds. There has also been a continuing effort towards
monitoring streamflow and nutrients at the watershed outlet
as well as data collection on climatic parameters and
management  operations.

The 300 ha farm used in this optimization study is one of
the pilot farms and was selected because its digitized field
boundaries and detailed management data were readily
available. Land use on the farm is comprised of 44%
cropland, in a rotation of corn silage and hay, and of 19%
pasture. The remainder of the land is either forested or
inactive. For this case study, dissolved P was considered the
target pollutant to be controlled. Dissolved P is readily
available for algal uptake (Sharpley and Beegle, 2001) and
is thus the most critical form of P.



1928 TRANSACTIONS OF THE ASAE

Walton
N

7 0 7 14
Kilometers

Delhi

Stamford

Cannonsville Reservoir watershed

New York State

Town Brook
watershed

Figure 3. Location of the Town Brook and Cannonsville Reservoir wa-
tersheds within New York.

BASELINE P LOADINGS
The SWAT model was applied to TBW to obtain baseline

phosphorus loss values for the watershed. For the baseline
scenario, management practices of conventional tillage and
daily manure spreading, representative of TBW before
intervention by the New York City Watershed Agricultural
Council (CCE, 1987; Gary Lamont, NRCS, Walton, N.Y.,
personal communication, 2002), were applied.

Base topography, land use, and soils data were obtained
from the New York City Department of Environmental
Protection. A 10 m DEM provided base elevation data for
watershed and subwatershed definition. Base land use data
was obtained from a 10 m land use classification grid derived
from 1992 LandSat Thematic Mapper imagery. Detailed soil
information was obtained from the SSURGO soils database
(NRCS, 1996; http://soils.usda.gov/). Both land use and soil
distribution thresholds for defining SWAT HRUs were set at
0% to avoid lumping of land uses and soils. The resulting
HRU map was overlaid with the farm boundary to identify the
HRUs, a total of 186, within the farm.

Base climate data was obtained from the National Climate
Data Centre (NCDC) database (http://lwf.ncdc.noaa.gov/oa/
climate/climatedata.html)  for a ten-year period (1992-
2002). Precipitation data were obtained from the Stamford
climate station located within the watershed (fig. 3); temper-
ature data were taken from the next nearest station, Delhi, as
Stamford did not have sufficient temperature data for the
necessary SWAT runs. The Penman-Monteith method
(Singh, 1988) was used in the computation of evapotranspira-

tion, requiring additional data for solar radiation, wind speed,
and relative humidity. As neither Stamford nor Delhi had
these data, values were generated using Cooperstown, New
York, data supplied by a weather database provided with
SWAT. SWAT was calibrated for monthly and annual
streamflow at the TBW outlet. Calibrated streamflow rates
corresponded to observed data for both annual (R2 = 0.9998;
Nash-Sutcliffe = 0.84) and monthly (R2 = 0.7642; Nash-Sut-
cliffe = 0.44) values. Visual comparison of daily hydrographs
showed that the model tended to underpredict streamflow in
the winter months and overpredict in the summer months.

After running SWAT on TBW, the ten-year average annual
dissolved P loading for each HRU within the study farm was
extracted. These loadings were then used as initial pollutant
loading inputs for the GA.

BMP EFFECTIVENESS AND COST
All cropland and pasture HRUs (149 of the 186 HRUs) on

the farm were considered for BMP implementation. Three
BMPs were considered, both individually and in appropriate
combinations.  For the purpose of this study, these were
defined as described in table 1. Specifically, nutrient
management  plans were considered for both cropland and
pasture. Riparian forest buffers were considered on all
agricultural  land bordering a stream. Contour strip cropping
was considered for all cropland. Due to the cool climate in the
study region, conservation tillage was not considered a
feasible BMP. The area of the farm considered for the case
study did not incorporate farmstead land, including feeding,
processing, and storage facilities. Thus, animal waste,
barnyard management, and vegetated filter strip BMPs were
not considered. Phosphorus reduction estimates (computed
using eq. 1) were obtained for predominant slope and soil
conditions on the farm (table 2). BMP cost data were obtained
from the Delaware County BMP cost records (Ed Blouin,
NYC-DEP, Kingston, N.Y., and Gary Lamont, NRCS,
Walton, N.Y., personal communication, 2002) and are also
shown in table 2.

OPTIMIZATION SETTINGS

A pollution reduction target of 60% of the baseline
dissolved P average annual loading from the farm was
established in order to demonstrate the methodology. By
definition of the fitness function (eq. 3), optimal scenarios
will meet the user-specified pollution reduction criterion.
This is crucial for ensuring that water of acceptable quality
is provided to the end user. For example, in the case study, the
pollution reduction criterion can be used to ensure that
potable water is supplied to New York City.

Table 2. Reduction estimates for dissolved phosphorus on predominant slopes (3% to 8% and 8% to 15%)
and hydrologic soil groups (B and C) of the farm and annualized costs of BMPs considered for the farm.

3% to 8% Slope 8% to 15% Slope Annual Cost
Best Management Practice Group B Group C Group B Group C

Annual Cost
($/ha)

Contour strip cropping 0.75 0.55 0.65[a] 0.68[b] 11
Nutrient management plan 0.75 0.36 0.50 0.43[a] 27
Riparian forest buffers 0.38 0.38[a] 0.38[b] 0.38[b] 1,942[c]

[a] Estimated based on effectiveness data grouped separately by soils and by slopes.
[b] Estimated based on overall average, independent of soil and slope.
[c] Includes establishment, incentive, and land rental.
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Table 3. Cost-effectiveness of the baseline and two near-optimal scenarios.
Near-Optimal Scenario

Baseline 1 2

Optimization fitness score 1.95 1.94
Phosphorus (P) loss (kg) 1471 587 588
Reduction of P loading from baseline (kg) −− 884 883
Cost increase from baseline ($/year) −− 1,430 1,683
Cost-effectiveness ($/year/kg) −− 1.62 1.91

BMPs implemented as % of cropland
Contour strip cropping −− 8.0 9.0
Nutrient management plan −− 11 14
Riparian forest buffers −− 0.4 0.1
Contour strip cropping/nutrient management plan combination −− 16 18

GA crossover and mutation rates of 0.9 and 0.01,
respectively, were used with an initial population of 15 under
70% replacement. These values were chosen based on the
parameter analysis of Veith (2002). The maximum allowable
cost increase was set at $28,551 per year, which reflects the
annual cost of applying all possible BMPs to the farm. As
BMP life expectancies vary, it was assumed that all BMPs
remain in place throughout the evaluation period (ten years)
and that BMPs with lifetimes shorter than ten years are
re-implemented  as necessary. On any HRU for which the GA
does not select a BMP, baseline management practices are
maintained and the baseline pollutant loading is used.

RESULTS AND DISCUSSION
The GA generated a number of near-optimal scenarios for

the farm by selecting and placing BMPs as was best suited
(fit) to maximizing P loss reduction and minimizing costs.
Two highly fit scenarios from the optimization run were
analyzed for cost-effectiveness and for BMP selection and
placement (table 3, fig. 4). The first (scenario 1) achieved a
fitness score of 1.95 out of a possible score of 2, while the
second (scenario 2) achieved a fitness score of 1.94. Both
scenarios met the established 60% dissolved P pollution
reduction target with cost increases from the baseline of
$1,430 and $1,683 per year, respectively (table 3). Scenario
1 was found to be slightly more cost-effective, saving about
$0.30 per year per kg reduction of dissolved P loading from
the watershed.

The selection and placement of BMPs within the scenarios
is shown in figure 4. For this case study, the GA assigned
BMPs mainly to cropland. Based on the GA allocations,
scenario 1 applied BMPs to less acreage of the farm than did
scenario 2. Additionally, the areas in specific BMPs and BMP
combinations,  other than buffers, were smaller in scenario 1
than in scenario 2, thus the slightly higher costs associated
with scenario 2. As indicated in figure 4, placement of the
selected BMPs varied between the scenarios, with some
HRUs that had previously not been allocated a BMP being
allocated one BMP or a combination in the second scenario.
In both scenarios, the pollutant target was met, implying that
both scenarios suitably reduced P. Routing structures used in
this methodology are not detailed enough to reflect variable
source area hydrology. In particular, near-stream areas are
not necessarily more preferred for BMPs than areas farther
from the streams.

As the GA was set to first find scenarios that met the
pollutant reduction criterion, a variety of scenarios offering

similar levels of pollutant reduction can be obtained. Costs
and cost-effectiveness of these scenarios will likely vary.
However, the presence of alternatives allows a farmer to
choose among the scenarios that are most personally suitable,
weighing tradeoffs between convenience and costs. For
example, a farmer might view buffer areas as loss of
productive land and opt for a scenario with less area in
buffers, such as scenario 2. A different farmer might, say for
management  reasons, find it convenient to implement a
solution that has less in-field BMPs and more area in buffers,
such as scenario 1. For this farm, the difference in areas in
buffers was not large. However, for solutions with large areas
in buffers, opting for more area in buffers, as opposed to
in-field BMPs, might lead to less cost-effective scenarios.

SUMMARY AND CONCLUSION
An optimization methodology was developed to deter-

mine the specific combination of BMPs, from a list of
feasible BMPs for each HRU, that optimized cost-effective-
ness for a given farm or watershed. This methodology
combines the SWAT nonpoint-source model for estimating
watershed-specific  pollutant loadings, a BMP tool that
estimates effectiveness from field studies reported in the
literature,  and BMP costs with the GA optimization heuristic
in order to determine the most cost-effective scenario among
all the feasible alternatives.

The methodology was demonstrated for a 300 ha farm in
New York State. Two solution scenarios for the case study
farm, which met the specified pollution reduction criterion at
the preferred cost-level, were readily identified by the GA.
These scenarios were analyzed for impact of BMP selection
and placement on cost-effectiveness.

Because the GA identifies scenarios that are equal, or
nearly equal, in fitness from among the range of feasible
solutions, watershed planners receive an indication of the
sensitivity of the watershed response to specific BMP
placements as demonstrated by the comparison between
scenarios 1 and 2. This information can be useful in
incorporating qualitative criteria and farmer-specific con-
cerns into the process of determining the most widely
acceptable  final solution.

This methodology is applicable to any area for which
average annual baseline pollutant loadings can be estimated
and for which field study data or effectiveness estimates for
the BMPs under consideration are available. Because the
methodology is designed to work on an average annual basis,
baseline pollutant loading, field study data, and effectiveness
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Figure 4. BMP placement for baseline and two near-optimal scenarios for the farm.

estimates should be representative of average expectations
over time. Thus, base data spanning at least 5 to 10 years
would be most appropriate. Use of this method can aid wa-
tershed planners in determining cost-effective solutions to
watershed-level  agricultural nonpoint-source pollution con-
cerns.

As noted earlier, the results are site-specific, and BMP
selection and placement for one farm or watershed can only
be extended directly to another when the latter has similar
land uses and site characteristics. In particular, while the
methodology itself is readily applicable to watershed-wide
BMP evaluations, the results obtained from the presented
case study cannot be directly scaled up and used to make
decisions at a watershed level. A watershed is likely to have

more varied land uses as compared to those associated with
the case-study farm. Consequently, the number and variety of
BMPs implemented on the watershed would be larger,
including BMPs that are more expensive, such as barnyard
runoff management. Thus, confirmations and additions to the
input data sets should be made to appropriately represent the
area being modeled.
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